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On gravitational collapse against a cosmological 
background 

A. BARNES 
Department of Mathematics, Imperial College of Science and Technology, 
London SW7, England 
MS.  received 11 th June 1970 

Abstract. The propagation of light in a spherically symmetric dust distribu- 
tion is investigated. A sufficient condition for light to escape from a collapsing 
region to an expanding region of the system is obtained. This corrects the 
1966 result of Raychaudhuri. It is also shown that, contrary to the conclusion 
drawn by Soin in 1968, no event-horizon other than that associated with the 
Schwarzschild radius occurs. These results are illustrated by some numerical 
calculations for particular models. 

1. Introduction 
The gravitational frequency shift of light radially transmitted from a static source 

to a static observer in the Schwarzschild exterior field has long been known 
(Schwarzschild 1916). Synge (1966) obtained the corresponding result for non-radial 
light waves. More recently the frequency shift of light radiated from a pressure-free 
collapsing sphere has been considered by Faulkner et al. (1964), and also by Banerjee 
(1966 a), who obtained an analytic formula. The  generalization of these results for 
non-radial light rays was given by Jaffe (1969). 

The  additional effects of cosmological expansion and of the gravitational field of 
matter between the source and the observer have been considered by Raychaudhuri 
(1966) and by Banerjee (1966 b) and by Som (1968). If there are no discontinuities 
in the density, Raychaudhuri concluded that light from the body would be trapped as 
soon as collapse sets in, but this will be shown to be incorrect. Instead, so long as 
light is not transmitted through any matter that has contracted to a radius R < ~ M ( Y ) ,  
where M(Y) is the gravitational mass of matter within the co-moving coordinate 
radius Y ,  it will escape. This result holds even if there are discontinuities in density. 
We note that the 2-surfaces ( R  = constant < ~ M ( Y ) ,  Y = constant) are closed 
trapped surfaces (Penrose 1965). Thus it appears that no essentially new features 
occur when the expansion of the universe is included in the analysis. 

2. The equations governing a pressure-free system 
I n  general relativity the metric of a spherically symmetric system may be written 

(Landau and Lifshitz 1962) in terms of co-moving coordinates Y, 8, C$ and t in the 
form 

with 

and 

ds2 = dt2 - (R’/l?)2 dv2 - R2(d02 + sin2 8 dC$2) (1) 

~2 = r2 - 1 + ~ i l i l ( ~ ) / ~  (2) 

MI = 4rrpR2R‘ (3) 
where r and Mare  arbitrary functions of Y ,  p is the energy density of matter and prime 
and dot symbols denote differentiations with respect to Y and t respectively. 
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Differentiating equation (2) with respect to t we obtain 

A = -M/R2 .  (4) 
Equations (2)-(4) are identical in form with the Newtonian equations and so we 

interpret M as the active gravitational mass within coordinate radius Y. We will 
consider only matter with positive gravitational mass since no matter with negative 
mass has yet been observed. 

The  proper distance s from the centre to radius Y is a strictly increasing function 
of Y and, since s is given by 

s = J'r(R'/l?) dr 

we see that R'jr 2 0. We deduce from (1) that I' is the derivative of R with respect 
to proper distance in the radial direction, and so where l? < 0 the gravitational field 
is so strong that it begins to close the space: i.e. on hypersurfaces of constant t, the 
area ,of the 2-surfaces given by Y constant decreases as Y increases. 

We will assume that Y = 0 is a point, i.e. R(0, t )  = 0,  and from (2) we see that 
M(0) = 0 and r(0) = 1. 

T o  simplify the analysis below, we write I?- 1 = f. Integration of equation (2) 
then yields 

0 

2M{(x + x2)1/2 - sinh -1(x)1/2} 
t =  f 312 for f > 0 (5) 

2M{sin-1(x)1/2 - (x - x y 2 >  

(-f)"'" 
t =  

for f = 0 

for f < 0 and l? > 0 (7a) 

for f < 0 and R < 0 (7b) 

where x = 1 f IR/2M and sin-I takes its principal value. We have chosen the arbitrary 
function of integration so that the system originates from a singularity at time t = 0, 
i.e. R(Y, 0) = 0 for all Y .  

When A4 is constant, we see from equation (3) that p = 0, and hence by 3irkhoff's 
theorem that (1) must be the exterior Schwarzschild form. In  fact, the coordinate 
transformations 

and 

transform (1) to the usual Schwarzschild form. 
The  equations (1)-(7) given above are equivalent to those of Raychaudhuri (1966), 

except that he used (7a) for both positive and negative R which is incorrect. 
We note from (7) that matter with f < 0 expands to a maximum radius Z M / (  - f) 

at time T = TM/( - f)"'" and then contracts to a singularity at time 2T. We wil1 
assume that after this time the matter coalesces to form a point-mass at R = 0. 
From (6) we see that matter with f = 0 expands to infinity with R = (9fN!1!~/2)~/~, 
whilst from (5) it follows that shells with f > 0 expand to infinity with R N f l l z t  
for large t. 

d T  = dt/I '+R dr/( l  -ZM/R)I' 

RSCh = R(r, t )  
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The  particular system described by the model depends, of course, on 
f (or I?) and M. For instance, if fW = /3r3 and f = kr2, we obtain one of 
the Friedmann universes, whereas Raychaudhuri's example, namely M = /3r3, 
f =  - r2{2 exp( - r/ro)  - l}, represents a universe that for large r is asymptotically a 
negatively curved Friedmann universe containing a region (Y < Y,, In 2) that ulti- 
mately contracts. 

3. Restrictions on the solution 
r and M are not completely arbitrary since the first and second fundamental 

forms of any hypersurface, Y = constant = b, must be the same whether the hyper- 
surface is regarded as embedded in the region Y < b or Y > b. This ensures that a 
system of admissible coordinates, i.e. one in which the metric tensor is C1 and piece- 
wise C3, exists (Robson 1968, Misner and Sharp 1964). The  continuity of the first 
fundamental form implies that R(r, t),  and hence l?, are continuous. Consequently, 
from (2) we see that r2 and M are continuous. The  continuity of the second funda- 
mental form #, where 

shows that I' itself is continuous. Continuity of M implies that surface distributions 
of mass do not exist. 

We note that R'/F 2 0 cannot hold for all t if R' changes sign, and so we must 
find conditions on M and f that ensure that this does not occur. We need the follow- 
ing relations : 

$ = RI'(d02 + sin2 O d#2) 

and 

which follow from (2), (5), ( 6 )  and ( 7 ) ;  and 

and 

Rt = 2R/3 
l?t < 21113 

f o r f  = 0 
for f < 0 

for f > 0 2R/3 < Rt < R 

for f = 0 

which follow from (2), (4) and (6) .  
It will now be shown that R' > 0 if and only if 

A4' 2 0 and .f' > 0 for f > 0 ( I l b )  
but where f' and A4' are not simultaneously zero. 

Forf > 0, using (9a) and (1Oc) we have 
That these conditions are sufficient forf = 0 can be seen immediately from (9b). 

R' > ( jRt -R) f ' / f  > 0 .  

For f < 0, a similar argument, using (9a)  and ( l o b ) ,  shows that the conditions (1 l a )  
are sufficient. The  condition hf' 2 0 is necessary since from (9 ) ,  and the fact that 
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$t N $R for small t, we see that R‘ N M‘R/3M. For f 2 0 the necessity of the 
second condition f’ 2 0 follows from the asymptotic behaviour of R‘ for large t, 
namely R’ -f’t/2f’l2 for f > 0 and R’ -f’R2/10M for f = 0. Iff < 0, we note 
that collapse back to a singularity occurs after time T = 2 ~ M / ( - f ) ~ ’ ~  and, since 
dT/dr 2 0 (for otherwise R would decrease outwards at some stage of the collapse 
sufficiently near the final singularity), the second of the conditions (1 l a )  follows 
directly. 

T o  obtain necessary and sufficient conditions for R’ < 0 we need only reverse 
the inequalities in (11). 

If the conditions (1 1) do not hold then at some stage of the motion collisions take 
place between neighbouring shells and we can no longer use co-moving coordinates. 
We could try to follow the motion after this point using non-co-moving coordinates, 
but from ( 3 ) ,  we note that if M’ # 0, R‘ = 0 implies that p is infinite, and so we 
would expect the zero-pressure assumption to be violated. We also note that the 
conditions (11) imply that p is never negative at any stage of the motion. 

We now consider the situation on hypersurfaces with I’ = 0. If r2 has a zero of 
order n and the metric (1) is non-singular, then R’ must have a (permanent) zero of 
order 3n and if p is to be non-singular then so must M‘. From equation (9a) for 
consistency we must have n 2 2. However, so long as these conditions are satisfied 
there is nothing singular about the hypersurface I’ = 0 and it cannot be an ‘impenet- 
rable barrier’ as Bondi (1947) stated. For example, in the positively curved Fried- 
mann universe we have I’ = cos r ,  f = - sin2 Y, M = p sin3 Y and R = S(t) sin r 
but the hypersurface r = 7712 is in no way singular. 

4. The propagation of light 

outwards, that is r increasing along the ray, we have from (1)) putting ds = 0, 
We consider only light emitted radially, i.e. 8 = = constant. For light emitted 

d r  r 
dt li. _ -  - 

and using (2)) 

the positive sign arising when I? > 0 and negative sign when 2 < 0. 
We now restrict attention to systems with f < 0 for Y < a and f 2 0 for r 2 a,  

where a is a constant. This class comprises systems which contain a region ( I  < a )  
that ultimately collapses, surrounded by a region which expands to infinity. We will 
also assume that M and f are bounded, except possibly as Y tends to infinity. This 
rules out infinite masses in finite regions of spacetime, and is also a restriction on the 
coordinate systems we use, since it rules out those systems that cover the whole of 
spacetime with a finite range of values of Y. 

Consider first the case where I’ < 0 for some Y < a. Since I’ 2 1 for r 2 a, it 
follows that there is a neck = 0 separating regions with I’ < 0 from the expanding 
background. It follows immediately from ( 1 3 )  that, if a ray from the region r < a 
reaches the neck after collapse has set in, then it can never escape to the expanding 
region since dR/dt < 0. Whether it escapes if it reaches the neck whilst it is expand- 
ing will depend on the details of the particular model. 

I 
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If F > 0 and I? < 0, we see from (13) that dRidt < 0 whenever 2M/R > 1. 
Since M’ > 0, it follows that d(2M/R)/dt 2 0, and so if at any point on the ray the 
condition 2MiR > 1 holds, then it will continue to hold along the ray. 

We have seen that the light cannot escape from collapsing regions once they have 
passed within their own Schwarzschild radius. 

However if, for r < a ,  2M/R < a < 1 along the ray, we have from (13) 

dR 
- > r - ( r = - i + q 2  > 1 - - ~ 1 / 2  > o 
dt 

but for the shell r = a ( f ( a )  = 0 )  it follows from (2) and (16) that 

&(a, t )  = (4~ /3 t )1 ’3  -+o as t -+ CO. 

Thus the light ray must eventually overtake the shell r = cz and reach the expanding 
region. The  condition 2MiR < < 1 is not very useful in practice, since, in order 

I / 

Figure 1. The results of numerical integra- 
tions for light rays in liaychaudhuri’y model 
(f = - - ~ ~ { 2 e x p ( - ~ / ~ ~ ) - - I }  and M = v 3  
where Y O  = l / ln  2 and hence f(1) = 0) are 
shown. For small Y a singularity forms after 
a time t = 6.283185 but light emitted from 
the centre is not trapped until after 
t = 6.283183. At Y = 0.72 the respective 
values are 63.38 and 62.86. The broken 
lines represent the history of shells with Y 

condant and the numbers given at the inter- 
sections are the values of the red-shift z of 
light from Y = 0.72 and received by an 

observer moving with the matter. 

P 

Figure 2.  As for figure 1 except that here 
1 = - r 2  +Po. This model has a smaller 
minimum value off( -0.854 compared with 
-0.1 16 in Raychsudhuri’s example) and 

light from the centre is trapped after time 
I = 3.04. This is earlier than the point of 
maximum expansion which occurs after a 
time t = 3.141593. The red-shift values 
given refer to light emitted from the centre, 



658 A. Barnes 

to see if it is satisfied, one would need to integrate (numerically) either (12) or (13). 
However, a sufficient condition for a ray to escape is clearly 2M(a)/Rem < 1 when the 
suf€ix ‘em’ denotes the value at the point of emission of the light ray. This last result 
seems to contradict that of Raychaudhuri (1966) who states that a ray would be 
trapped if it met collapsing matter at any point along its path. We illustrate this 
point with numerical integrations (see figures 1-3) for several models including that 

6 . C/361 T3 

0 2 4 6 0 IO 
t 

Figure 3. This model contains a region with R’< 0 and a neck at r = 213. Light 
emitted from shells with r less than about 0.55 can never escape and the cut-off 
at the neck occurs at about time t = 0.36. Results are shown for several rays 
emitted from Y = 0.6. Rays emitted from this radius after a time t = 0.026 are 
trapped. The rays labelled by A, B, C, D, E and F are emitted at times 0.001, 
0.004, 0.011, 0.019, 0.024 and 0.044 respectively. The explicit forms of M and 
F are: 
f = -sin2 3nr/2, 
f = -(2 +sin 3nr/2)/3, 
f = -(2 -COS 3 ~ ~ / 2 ) / 3 ,  

and 
f = cos 3xr/2, 

M = sin’ 3nr/2, 
M = (2 -cos 3m)/3, 
M = (2 -COS 3 ~ ~ ) / 3 ,  

M = (2 -cos 3 ~ r ) / 3  +(Y -2/3)3, 

for Y < 1/3 
for 113 < r -$ 112 
for 112 < r < 213 

for 213 < r < 1. 

given by Raychaudhuri. A ray emitted from a shell that is expanding may eventually 
meet collapsing matter which is within its Schwarzschild radius and hence the ray 
becomes trapped. For an example of this latter phenomenon one need only consider a 
section of a positively curved Friedmann universe separated from the expanding 
universe by a region of empty space. 

We now consider the question of whether an event-horizon other than that 
associated with the Schwarzschild radius develops. From (9a),  (1Oc) and (12), we 
obtain forf > 0 

From (5) we have 

dr (l+f)112 
- >  
d t  (M’/3M+ f‘i2f)R’ 

112 1 x1/2 f 1’2 t 
R X 
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and so, unless x --+ 0 along the ray, there exists a positive /'3 such that 

R < ,Bf1Iz t .  

If, however, x + 0 along the ray, by expanding ( 1 5 )  as a power series in x, it follows 
that for some fl1 > 0 and sufficiently large t 

R < ,BIM1iz t2I3. 
From (14)  we have 

and since the right-hand integral tends to infinity as t + CO and the integrand on the 
left-hand side is non-zero and is bounded, except possibly for large r ,  it follows that 
r -+ CO as t + CO. A similar argument proves that Y -+ CO as t -+ CO if R < ,Bf1'2t. 
Thus no event-horizon develops in the region Y > a. This seems to contradict a 
result of Som (1968) who considered the special case where the collapsing body is 
separated from the background by a region of empty space. We merely note than an 
event-horizon would occur if a positive cosmological constant were introduced, 

A further possibility remains : a ray may approach asymptotically the coordinate 
radius a. For such a ray dR/dt must tend to zero, and so it follows from (12)  that 
R + 2 M ( a )  along the ray in such a way that for large t the ray is passing through 
collapsing matter. We now show there is only one such ray (for given 8, 4 and rem) 
and rays which leave at later times cannot escape, whereas those emitted earlier 
escape in a finite time. 

If there were two such rays then all rays emitted at intermediate times would have 
this property, otherwise they would cross one or other of the two rays and the future 
null direction at this event would not be well-defined. If we label two such rays by 
I and 11, 11 being later than I ,  we have rI(t) > rII(t) and hence (as R' > 0) R,(t) > R,,(t). 
Since for both rays R(t) -+ 2 M ( a )  as t -+ CO, it follows that eventually 

dR,(t)/dt < dR,,(t)/dt 

and since this holds for all rays between I and 11, then (dR/dt)' < 0. 
However, as t -+ CO, r,(t) -+ a,  R,(t) -+ 2 M ( a )  and f { r ( t ) }  -+ 0 and so eventually 

- 2 M / f R  > 1.  Now, from (9a)  and ( l l a ) ,  it follows that by using I? < 0 we obtain 

2 M  2 M f  2 M f '  
(-')(-) = 'R(_f) < o  

and so 

and since this contradicts the condition above, there can be only one such ray. I n  
the particular case of a collapsing body surrounded by a region of empty space, this 
ray is emitted as the body passes through its Schwarzschild radius. 
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5. The frequency shift 
If U" is the four-velocity of the matter and k" the four-momentum of the radiation, 

then the fractional shift in frequency x of radiation emitted from the matter and 
received by an observer moving with the matter is given by 

1+2=--- ( kaUa)emi t t ed  - k4emlt ted 

( kaUa)observed  k40bserved 
Since k" is given by 

we obtain 

and so 

kaka = 0, k a ; b  k b  = 0 

k4' 5 (k4R'/I')' = 0 

k4i? 
- T -  

dk4 
dr r 
_ _ -  

with a negative sign for an outgoing ray and a positive sign for an incoming ray. 
Equation (16) may be integrated analytically in two special cases. The  first case 

is the class of isotropic cosmological models where k4 = l/S(t) with R = rS(t). 
The  second case is where M' = 0 (empty space) and here we have 

The  first term on the right-hand side of (17) is the usual Schwarzschild red-shift 
factor, whereas the second is due to the motion. Equation (17) is most easily found 
by transforming from the usual Schwarzschild coordinates to co-moving coordinates 
by equation (8). 

In  general, however, it is difficult to integrate (16) and one must resort to numeri- 
cal integration. Equation (12) was integrated numerically and the red shift estimated 
using 

where T(? )  is the time interval between the arrival of two rays at coordinate radius Y .  

The  time interval between emission of the rays is assumed small. 

+ = Tobserved /Temi t t ed  (18) 

The  results for various forms off and M are given in figures 1-3. 

6. Conclusions 
A general pressure-free system containing both an expanding region and a region 

that ultimately collapses has been considered. It has been found that light rays emitted 
from matter in the collapsing region which meet a closed trapped surface in the 
collapsing region eventually fall back into a singularity and so an event-horizon 
develops and at later times no light rays can pass from the collapsing to the expanding 
region. If, however, a ray does not meet a closed trapped surface then, except for the 
limiting case considered in 6 4, it must escape and furthermore it eventually overtakes 
all expanding matter and so no event-horizons develop in the expanding region. 
These results correct those of Raychaudhuri (1966) and Som (1968). 
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